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a b s t r a c t

Accurate, fine spatial resolution predictions of surface air temperatures are critical for understanding
many hydrologic and ecological processes. This study examines the spatial and temporal variability in
nocturnal air temperatures across a mountainous region of Northern Idaho. Principal components anal-
ysis (PCA) was applied to a network of 70 Hobo temperature loggers systematically distributed across 2
mountain ranges. Four interpretable modes of variability were observed in average nighttime temper-
atures among Hobo sites: (1) regional/synoptic; (2) topoclimatic; (3) land surface feedback; (4) canopy
cover and vegetation. PC time series captured temporal variability in nighttime temperatures and showed
strong relationships with regional air temperatures, sky conditions and atmospheric pressure. PC2 cap-
old air drainage tured the topographic variation among temperatures. A cold air drainage index was created by predicting
PC2 loadings to elevation, slope position and dissection indices. Nightly temperature maps were produced
by applying PC time series back to the PC2 loading surface, revealing complex temporal and spatial vari-
ation in nighttime temperatures. Further development of both physically and empirically based daily
temperature models that account for synoptic atmospheric controls on fine-scale temperature variabil-

s ar
ity in mountain ecosystem
of climate change.

. Introduction

Surface air temperatures drive many ecological processes and
re a key input to many vegetation and hydrologic models (Running
nd Coughlan, 1988). Much of the concern about the potential bio-
hysical and ecological impacts of climate change (e.g., snowmelt
iming, shifts in species occurrence) centers on high-elevation and

ountain systems (Diaz et al., 2003). Accurate predictions of tem-
erature in mountains are therefore essential if we are to reduce
hysical uncertainty in predictions of ecological impacts of climate
arming.

Input data for surface air temperature models come from sur-
ace weather stations, the majority of which are located in cities,
alleys, and generally at low elevations (Di Luzio et al., 2008). Cli-
ate stations in high elevation mountains are sparse or absent,
nd those that do exist often have short or incomplete records
Daly et al., 2007). In the absence of climate station data, statistical

ethods have been developed to predict temperatures in complex
opography, using either fixed lapse rates or empirical approaches

∗ Corresponding author. Tel.: +1 406 329 3119.
E-mail address: zaholden@fs.fed.us (Z.A. Holden).

168-1923/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.agrformet.2010.10.006
e needed to guide future monitoring efforts aimed at assessing the impact

Published by Elsevier B.V.

(e.g., thin plate splines) (Daly, 2006; Daly et al., 2008; Hutchinson,
1991).

Temperature varies at fine spatial scales in complex terrain. It
has been known for decades that radiatively cooled air drains into
valleys and basins at night. A number of studies have contributed
important knowledge about the physical processes controlling
nocturnal cold air drainage. Barr and Orgill (1989) identified exter-
nal meteorological factors that influence magnitude of cold air
drainage and nocturnal winds. Kondo et al. (1989) describe phys-
ical mechanisms of heating and cooling related to nocturnal cold
air flow in a single basin. A number of studies by Whiteman and
others explore the mechanisms influencing the development and
break-up of inversion patterns in mountain valleys across differ-
ent valley basins (Whiteman, 1982; Whiteman et al., 1999, 2001;
Whiteman and McKee, 1982). Chung et al. (2006) developed a
statistical model for predicting cold air drainage accumulation
for a small basin in Korea. These studies and others (Dobrowski
et al., 2009; Lundquist and Cayan, 2007) indicate that cold air

drainage and pooling are physically interpretable processes that
occur across diverse topographic settings throughout the western
United States. However, direct objective measurement and model-
ing of this phenomenon requires micrometerological observations
and modeling techniques that were unavailable until recently

dx.doi.org/10.1016/j.agrformet.2010.10.006
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:zaholden@fs.fed.us
dx.doi.org/10.1016/j.agrformet.2010.10.006
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Lundquist et al., 2008). Similarly, mid-slope thermal bands that
omplicate standard temperature lapse rate modeling approaches
ere described as early as 1862 (Barry, 2008) and are widely
oted (Barry, 2008; Whiteman, 2000). These effects are not well
ccounted for by available interpolated temperature models and
RISM is the only interpolation model in extensive usage that
ttempts to account for temperature inversions (Daly et al., 2008).
patial and temporal patterns of nocturnal temperatures are likely
o vary with physiography, synoptic atmospheric patterns (Daly
t al., 2009) and vegetation characteristics, and across a range
f spatial scales. Furthermore, work by Daly et al. (2009) shows
hat atmospheric conditions influence the degree to which night-
ime air temperatures become decoupled from free air conditions.
hus the magnitude of cold air drainage and minimum nighttime
emperatures in mountains vary from night to night. Methods are
eeded for linking synoptic atmospheric controls with fine-scale
hysiographic variation to predict daily temperature variation in
ountains. Further analysis of high resolution temperature data

rovided by new sensor networks across different physiographic
ypes and across a range of spatial extents may be needed to better
nderstand spatial and temporal patterns of topoclimatic variabil-

ty.
The availability of inexpensive temperature sensors opens the

oor for high-resolution topoclimatic analyses. Hubbart et al.
2007) used thermochron ibuttons to quantify the impacts of cold-
ir pooling on nighttime conifer tree transpiration. Lundquist and
ayan (2007) used a combination of inexpensive sensors to show

nfluences of physiography on temperature patterns. Past studies
ave also used several topographic indices such as elevation, aspect,
istance from streams and flow accumulation grids to quantify and
odel microclimate variability in complex terrain (Chung et al.,

006; Daly et al., 2009; Dobrowski et al., 2009; Fridley, 2009). How-
ver, many additional terrain indices have yet to be evaluated as
otential tools for quantifying topoclimatic variability.

This study examines the temporal and spatial variability in noc-
urnal air temperatures using a network of temperature sensors
istributed in a systematic stratified sample across two North Idaho
ountain ranges. Principal components analysis (PCA) was used to

ndependently identify and then model the spatial and temporal
ariation among Hobo sensors. PC loadings, representing the spa-
ial variation among stations, are projected onto indices derived
rom a 30 m digital elevation model to create a nocturnal cold air
rainage index. Multiple linear regression models predicting the
emporal variation in PC time series are constructed. By applying
C time series back to predicted PC loading surfaces, daily night-
ime temperature maps are created for the Bonners Ferry study
rea.

. Study area and methods

.1. Study area

Our study area encompasses Boundary County, Northern Idaho,
SA (Fig. 1). The Selkirk and Purcell Mountain ranges lie to the
est and east respectively, separated by the Kootenai River. Topo-

raphic relief in the area is extreme, with elevation rising from
30 m in the valley to 2350 m in the Selkirk Mountains over
distance of about 10 km. Bonners Ferry lies in a climatically

nique region of the US, where both maritime and continen-
al climates influence seasonal weather patterns (WRCC 2010;
ttp://www.wrcc.dri.edu/narratives/IDAHO.htm).
.2. Instrumentation

One hundred and twenty Hobo microloggers, instrumented
ith temperature sensors were installed across the Selkirk and Pur-
Meteorology 151 (2011) 261–269

cell mountains in a systematic random sample design, stratified
by elevation, solar radiation (Fu and Rich, 1999) and a compound
topographic index (CTI) (Moore et al., 1993). Sensors were installed
unshielded at 2 m height on the north side of large diameter trees
beneath the forest canopy. Lundquist and Huggett (2008) suggest
that with proper positioning, trees and vegetation can be used to
shield sensors from direct incoming radiation from above. Because
snow albedo would have likely caused bias in spring temperatures
at many sensor locations, we evaluate only nocturnal temperatures.
Because spring snowpack may have covered higher elevation sen-
sors, only July 7th to October 31st data were used. Temperature at
each site was recorded at 10 min intervals from June 7th, 2008 to
October, 2008. Fifty dataloggers failed or were destroyed by ani-
mals, therefore only 70 stations are analyzed here.

2.3. Analysis methods

Principal components analysis (scaled and centered PCA) was
used to explore nighttime temperatures with princomp in the
stats package in R (R core development team, 2008). Terminology
describing PCA varies among different disciplines, with the atmo-
spheric sciences favoring “empirical orthogonal function (EOF)”
analysis. In this instance, PCA and EOF analysis are the same, and
the analysis described here is similar to that of Lundquist and Cayan
(2007). We examined spatial and temporal patterns in both night-
time minimum and average nighttime temperatures, where daily
average nighttime temperature was calculated using a sunrise and
sunset table so that for each day, only temperature observations
from 1 h after sunset and 1 h before sunrise were included. Pre-
liminary evaluation of PCA results showed that PC loadings (EOF’s)
represented the topographic variability among stations while PC
time series showed sensitivity to daily variation in regional air
temperatures and atmospheric conditions.

2.3.1. Analysis of PCA time series
PC scores (principal component time series) were first

interpreted using correlation analysis, with temperature,
solar radiation and relative humidity from the Saddle Pass
Remote Automated Weather Station (RAWS) and 700 mbar
geopotential heights over the study area from the North Amer-
ican Regional Reanalysis (NARR) Data (Mesinger et al., 2006)
(http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml,
accessed October 2009). Daily variation in principal component
time series was then modeled using ordinary least squares
regression. Temperature, relative humidity and solar radiation
from the Saddle Pass RAWS station (Lat/Long = 48.78, −116.35;
Elev. = 1720 m) were used as independent variables. RAWS data
were plotted and visually inspected but no missing data or
anomalous values were found. Two indices were derived from the
North American Regional Reanalysis (NARR) data. These indices,
representing the gradient in free atmosphere lapse rates across the
study area were calculated by first determining the 850–500 mb
lapse rates (◦C/km) in each NARR grid cell and then differencing
grid cell lapse rates at the north–south and east–west edges of the
study domain. These indices were developed to capture any poten-
tial changes in free atmosphere stability across the study area that
may in turn impact surface microclimate temperature regimes.
Henceforth, these indices are abbreviated EWP (east–west pattern)
and NSP (north–south pattern). A number of candidate regression
models were compared using the Akaike Information Criterion
(Akaike, 1974). The AIC is a means of assessing model parsimony,

and imposes a penalty such that addition of an independent
variable that does not improve the model results in a larger AIC,
indicating a weaker model. Model with the fewest variables and
lowest AIC was selected, with a reduction in AIC score of less two
considered to be insignificant.

http://www.wrcc.dri.edu/narratives/IDAHO.htm
http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml
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ig. 1. Bonners Ferry study area (upper left panel) in Northern Idaho, USA showing:
oadings on nighttime average temperatures predicted to 30 m topographic variab
ariables. (D–F) Selected nighttime average predicted temperatures.

.3.2. Analysis and modeling of PCA spatial loadings
We examined relationships between PC loading patterns and 14

opographic indices described by Evans and Cushman (2009) and
olden et al. (2009). These indices were created for the Bonners
erry study area using a 30 m digital elevation model (DEM) from
he Shuttle Radar Topography Mission (Farr et al., 2007), and they
ncluded several measures of topographic complexity and relative
lope position. Similar to Chung et al. (2006), terrain complex-
ty indices were calculated across a range of pixel window sizes

3 × 3. . .27 × 27 pixels). All of the variables in Holden et al. (2009)
ere examined. However, dissection and relative slope position

ariables were of particular interest, because they have not previ-
usly been evaluated as potential topoclimatic predictors. A 30 m
ormalized Differenced Vegetation Index grid (NDVI) was derived
levation map and location of 70 Hobo temperature sensors (white triangles). (B) PC
) PC loadings on nighttime minimum temperatures predicted to 30 m topographic

from a terrain and reflectance corrected July, 2006 Landsat The-
matic Mapper 5 image (Rouse et al., 1974). Values for each raster
at the location of each Hobo sensor were extracted using Hawth’s
Tools in ArcGIS version 9.2.

Correlation analysis was first used to examine relationships
among PC loadings and independent variables. Principal compo-
nent 1 captured the daily temperature signal common among all
Hobo stations and were spatially uniform (mean = 0.129; standard
deviation = 0.01). PC2 explained 4% of the variation among the 70

Hobo sensors and PC2 loadings showed sensitivity to several topo-
graphic indices, including elevation, terrain complexity and relative
slope position. These results indicated that PC2 captured varia-
tion in nighttime temperatures associated with topography. PC2
loadings were fit to three topographic variables using the Ran-
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Fig. 2. Flowchart describing steps in PCA reco

om Forest algorithm (Breiman, 2001) and the Model Improvement
atio tool of Murphy et al. (2010) was used to select a parsimo-
ious model with the highest variance explained and lowest mean
quared error. Table 2 gives equations and references for each
opographic index. Random Forests is a bootstrapped classifica-
ion tree algorithm that has superior predictive capabilities over

ost other classification and regression algorithms. Readers unfa-
iliar with Random Forests or the topographic indices described

ere can refer to Breiman (2001), Holden et al. (2009) or Cutler
t al. (2007) for more information. The resulting PC2 Random Forest
odel was predicted to 30 m grids to produce PC2 loading sur-

aces for the study area. The same methods were applied to average
uly–October nighttime temperatures for each Hobo temperature
tation.

.3.3. Reconstruction of daily nighttime temperatures using PCA
By applying principal component time series back to modeled

C loading surfaces, daily nighttime average temperatures maps
ere produced. A flowchart describing the PCA reconstruction pro-

edure is shown in Fig. 2. This method entails predicting the spatial
omponent of the PCA to new feature space, applying the modeled
CA time series back to the predicted loading surfaces, then restor-

ng the standard deviation and the mean. Spatial prediction of the

ean and standard deviation of temperatures at each Hobo site
nd each principal component loading are required to reconstruct
ctual temperature values, which introduces significant error. An
ttempt to predict temperatures in this manner resulted in large
tion of daily average nighttime temperatures.

(>2 ◦C) errors. Thus, these predicted daily temperatures are pro-
duced for visual interpretation only.

3. Results

3.1. PCA results and daily variation in principal component time
series

Results of analyses using nighttime average and nighttime
minimum temperatures were very similar. We present results for
only nighttime average temperatures. PCA on nighttime average
temperatures from 70 Hobo stations yielded 4 retained principal
components that explain 99.2% of the variability among hobo
stations, with PC1, PC2, PC3 and PC4 explaining 93.0, 4.0, 1.4 and
.08 percent of variation respectively. Scatter plots and coefficients
of determination (R2 values) from linear models between PC
scores and select environmental variables are shown in Fig. 3.
Table 1 summarizes regression models for each PC time series. PC1
captures the average daily temperature signal across all stations
and is well correlated with average daily temperature (R2 = 0.89)
and solar radiation (R2 = 0.38) from the Saddle Pass RAWS station.
A regression model with daily temperature and solar radiation at

that station explains 96% of the variation in PC1. PC2 identifies the
difference in free air versus valley bottom temperatures (calculated
as the difference between sensors at 530 and 2300 m in elevation,
the lowest and highest points in the study area), and shows
sensitivity to 700 Mb geopotential height which is representative
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Fig. 3. Relationships between average nighttime temperature PC time series an

f the regional free-air temperature (Fig. 3). A regression model
ith Tmin, Tmax, solar radiation, 700 mb geopotential height and
SP explained 79% of the variance in PC2 time series (Table 1). PC3
ime series shows sensitivity to RAWS Tmin, and RHmax. When
C3 loadings are correlated with nighttime average temperature,
wo distinct groups of days are evident, and reveal a differential
esponse to minimum temperature (Fig. 3).

able 1
ndependent variables and coefficients of determination used in regression mod-
ls predicting principal component time series. Tavg, Tmin and Tmax and solar
ome from the Bonners Ferry RAWS station. NSP is the North–South difference in
00–500 mb geopotential heights from NARR.

Model Ind. variables R2 (adj.)

PC1 Tavg, Solar 0.96
PC2 Tmin, Tmax, solar, NSP, 700 Mb 0.79
PC3 Tmin, Tmax, RHmax, Solar 0.72
RHmax RAWS

ation, windspeed and atmospheric pressure. Each point represents a single day.

3.2. Spatial variation in principal component loadings

PC spatial loadings are highly interpretable. PC1 loadings are
spatially uniform (mean/SD = 0.129/0.01) and show no correlation
with topographic variables. PC2 loadings on nighttime temper-
ature are well correlated with elevation (R2 = 0.69), hierarchical
slope position (Murphy et al., 2010) (R2 = 0.42) and a topographic
dissection index calculated on a 450 m × 450 m window (DISS15;
R2 = 0.24) (Table 2; Fig. 4). A Random Forest model with these three
variables explains 82% of the variance in PC2 loadings on night-
time average temperature and 74% of the variability in nighttime
minimum temperature (Table 3). Predicted PC2 loading surfaces on
nighttime average and minimum temperatures are shown in Fig. 1B

and C. These surfaces are physiographic indices that capture the rel-
ative vulnerability of landscape positions to cold air drainage, with
divergent patterns in valley and basin bottoms. PC3 shows weak but
significant correlation with longitude (R2 = 0.26; Fig. 4), reflecting
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Table 2
Description of topographic indices used to create predicted PC2 loading surfaces.

Index Abbrev. Description Reference

Elevation ELEV Shuttle Radar Topography Mission
Hierarchical slope position HSP Cross-slope decomposition function ca
Dissection DISS15 (z − z(min))/(z(max) − z(min)), where z

Table 3
Random Forest model results predicting spatial variability in principal component 2
loadings and July–October average nighttime temperatures. Independent variables
are presented in order of importance.
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Model Independent variables Pseudo-R

PC2 Tmin ELEV, HSP, DISS15 0.74
PC2 Tavg night ELEV, HSP, DISS15 0.82

mall differences in air temperatures on the East and West slopes of
he Selkirk and Purcell mountain ranges. PC4 loadings show weak
ut significant relationships with NDVI (R2 = 0.36), suggesting the

nfluence of canopy cover or vegetation abundance on nighttime
emperatures.

.3. Reconstruction of nightly temperatures with PCA

Following the methods described in Section 2.3.3, principal
omponent scores were restored to PC loading surfaces to produce
aily maps of predicted nighttime average temperatures for each
ight of the study period (July–October, 2008). Reconstructed daily
emperature time series show fine-scale, complex spatial variations
n nighttime air temperatures. Three example nights are shown in
ig. 1. Some nights show linear lapse rates (Fig. 1D; 6/22). How-
ver, non-linear lapse rates occur, resulting in mid-slope thermal
ands which are most evident on mountain fronts directly facing
he Kootenai river valley, and in areas upslope from valley bottoms
Fig. 1E; 07/31). Cold air drainage is evident in valley bottoms and
n the Kootenai river valley bottom on most nights. Strong inver-
ion patterns are evident during periods of stable high atmospheric
ressure (Fig. 1F; 10/30). On these nights, nighttime temperatures
t the highest elevations are much warmer than in the valley bot-
om 1800 m below, while nighttime temperatures are coldest in

id and upper-elevation valley bottoms.

. Discussion

Temperature variability in both time and space across the Bon-
ers Ferry study area is remarkably complex, reflecting interactions
f synoptic atmospheric conditions with terrain, vegetation and
patial location. A dominant feature of nighttime temperature
n this region is cold air drainage. This phenomenon has been
escribed in several recent studies (Chung et al., 2006; Dobrowski
t al., 2009; Lundquist and Cayan, 2007; Lundquist et al., 2008) and
as been well documented in small basins and watersheds (Chung
t al., 2006; Kondo et al., 1989; Whiteman, 1982; Whiteman et al.,
001).

Our analysis and results were similar in many ways to
hat of Lundquist and Cayan (2007) who describe relationships
etween PC time series and patterns of atmospheric pressure, and
Lundquist et al., 2008) who describe an empirical method for
dentifying areas vulnerable to cold air pooling. Similar to these
nalyses, both the spatial and temporal variation in primary modes

f variability in nocturnal air temperatures were interpretable, with
C time series showing correlations with sky conditions and atmo-
pheric pressure. Importantly, in this analysis, PC2 loadings were
apped to topographic variables, resulting in an empirically based

hysiographic index. PC2 loadings, representing the topographic
Farr et al. (2007)
lculated on a moving window: 3 × 3. . .27 × 27 pixels Murphy et al. (2010)
= elevation of the focal cell in a 15 × 15 cell window Evans (1972)

variation in temperatures among these 70 mountain stations were
fit to three indices with greater than 80% accuracy. The PC2 loading
surface is scaled around zero and areas with significant drainage
(valley bottoms and concave basins) show strongly positive load-
ings, while exposed areas with little drainage (ridges, hilltops)
have negative loadings. Consistent with Dobrowski et al. (2009),
approximately 28% of the study area shows negative PC2 loadings,
indicating that cold air drainage influences nearly a third of the
study area to varying degrees.

Two terrain indices (HSP and DISS15; Table 2) previously
described by Holden et al. (2009) were significant predictors of
spatial variation in nighttime air temperatures. A compound topo-
graphic index (also referred to as topographic convergence index
in Dobrowski et al. (2009) and Chung et al. (2006)) was evaluated,
but was not significantly correlated with any PC loadings. HSP and
DISS15 both provide measures of topographic position relative to
surrounding terrain. HSP quantifies the relative position between
valley bottom and adjacent ridgetops (Murphy et al., 2010), while
DISS15 calculates the degree to which a pixel is above or below
adjacent cells in a 15 pixel radius window. Both measures are
potential indicators of nocturnal cold air drainage. In the absence of
fine-scale physically-based models of air flow and drainage, these
indices may be useful for improving empirically-based models of
topoclimatic variability.

The examination of larger-scale, synoptic variables assisted in
the interpretation of potential mechanisms influencing variability
captured in PC2 (Table 1). Geopotential heights and especially the
north–south gradient in free air lapse rates (NSP) were significant
predictors in regression modeling of PC2 scores, indicating that sub-
tle gradients in synoptic conditions across the study area impact
cold air drainage patterns. A gradient in background atmospheric
stability captured in the NSP index would most likely impact the
development of anabatic and katabatic flows and inversion heights
differentially across the study area. This would in turn lead to spa-
tial variability in surface microclimatic regimes captured in the PC2
loading maps.

Examination of PC3 spatial loadings and time series revealed
what appears to be a land surface-atmospheric interaction. PC3
time series plotted against RAWS Tmin shows two distinct groups
of days with opposite linear trends that separate where nights are
at or near freezing (Fig. 3). PC3 loadings show a trend with longi-
tude, indicating temperature differences between the Selkirk and
drier Purcell Mountains to the East. Taken together, the spatial and
temporal patterns in PC3 suggest a land surface–atmospheric inter-
action and a differential response of local nighttime temperatures
to both atmospheric conditions and local site conditions. Without
additional meteorological and biophysical data at these locations
(e.g. humidity and soil moisture data), we can only speculate about
the physical mechanisms driving this apparent variation. It is pos-
sible that radiative cooling at night varies as a function of solar
loading during the day and atmospheric moisture at night, and that
this temporal pattern in turn is sensitive to site conditions. The
Purcell Mountains lie in the rain shadow of the Selkirks, and are

significantly drier. Drier sites, depending on vegetation cover and
substrate, would channel more energy into sensible heat gains and
losses over the course of day leading to larger diurnal temperature
swings than sites with more moisture. Sky conditions, atmospheric
moisture and nighttime temperatures, in turn, could influence the
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Fig. 4. Correlations between PC loadings (EOF’s) and topograp

agnitude and direction of energy exchange between the air and
round. For example, on warm, overcast nights, the ground could
bsorb heat differentially depending on the soil water balance,
hile on cold, clear nights, the transfer of heat would be from the

oil to the air. Physically based models would be needed to better
nderstand these mechanisms; however, the patterns we observe

n these data suggest interactions between local biophysical con-
itions and synoptic atmospheric patterns that to our knowledge
re not accounted for in available temperature models.

The influence of canopy cover or vegetation abundance on night-
ime surface air temperatures in this study was weak (less than
% variance explained) but is still noteworthy. One of the primary
rivers of landscape-scale vegetation change in the western US will

ikely be insect-induced tree mortality and wildfires. Additionally,
hanges in site water balance associated with climate warming
r altered precipitation patterns will likely result in shifts in site-
pecific leaf area. How landscape-scale or site-level changes will
nfluence cold air drainage is unknown. However, in combination,
hanges in canopy cover interacting with site water balance could
ignificantly alter surface air temperatures via mechanisms that
ill be impossible to account for given available data and mod-

ls. Interactions among land surface-air temperature feedbacks,
egetation and surface air temperatures warrant further investi-
ation.
Topographic variation in this region is extreme. The aver-
ge elevation in the Selkirk Mountains changes 600 m in 1 km.
here fine-scale topoclimatic variation occurs, coarse resolu-

ion (e.g. 800 m or greater) interpolated gridded models will
ave limited utility for predicting local air temperatures, par-
riables. Each point represents a temperature sensor location.

ticularly where slopes are steep or valleys extremely narrow
relative to the model resolution. Micrometeorological measure-
ments from relatively inexpensive data loggers can be useful for
developing appropriately scaled observations and analyses that
provide detail currently impossible with physical interpolation
from long-term climate networks. Conducting field campaigns
to characterize microclimatic regimes within small management
units is a challenging task, but may be necessary to gather baseline
information for planning efforts. Short-term field campaigns can
describe local microclimatic patterns, which then may be mon-
itored over longer time periods to elucidate their full dynamics
and relationships to topographical and synoptic climate drivers.
This would perhaps enable robust prediction of local topographic
control on daily to monthly lapse rates. The challenge then would
lie in relating these patterns to longer-term datasets and oper-
ational data sources in order to gauge potential microclimatic
changes within the context of broader-scale regional temperature
changes.

Ecologists have long been aware of the influence of micro-
climatic variation on vegetation distribution. Efforts to manage
ecosystems under current and future climate scenarios may require
data at resolutions much finer than are currently available in a
consistent and timely manner (Millar et al., 2007). Topoclimatic
variability is likely to be particularly important in mountains of the

western United States where extreme topographic gradients cre-
ate complex microclimates that support diverse ecosystems within
small management units. Resource managers engaged in climate
change adaptation planning often require high-resolution climate
data for efforts like baseline species distribution mapping that can
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e used with climate change scenarios to predict potential species
ange changes (Iverson et al., 2007; McKenzie et al., 2003). Fine-
cale surface air temperature models may be critical for accurate
ssessments of the potential impacts of climate warming on shifts
n species distribution and abundance (Dobrowski, 2010).

There are several important limitations in the analysis presented
ere. First, with only six months of data, we can say nothing about
he degree to which the patterns described here are consistent over
ime. Clearly, interannual and decadal climatic variation driven
y coupled ocean/atmosphere processes (e.g., ENSO, or the Pacific
ecadal Oscillation) could affect the frequency of high and low
ressure systems and their influence on the relationships described
ere. Daly et al. (2009) note that some of the synoptic patterns
hat influence cold air drainage and pooling may change over
ime. Thus, while the topographically driven, spatial component of
elationships between stations is likely to remain robust through
ime, local relationships to regional climate may change, and could
e important for understanding the impacts of combined future
limate change impacts. Further analyses using high-resolution
ata and with a range of statistical methods across longer time
eriods are clearly warranted. Finally, while PCA can sometimes
apture important features of data related to physical processes, it
s nonetheless an empirical method. True physical models of the
octurnal temperature variability are ultimately needed.

. Conclusions

This study examined spatial and temporal variation in nighttime
ir temperatures, using a network of 70 temporary stations dis-
ributed across two mountain ranges in a topographically complex
andscape. PCA revealed four interpretable modes of variability in
verage nighttime temperatures. By isolating and then predicting
he spatial variation associated with topography, a nocturnal cold
ir drainage index was produced. Our analysis also revealed land
urface-air temperature feedbacks and small variations in tem-
erature associated with a greenness index derived from Landsat.
hese results contribute to a growing body of research describing
he influence of physiography on air temperatures in mountains
nd highlight the challenges of predicting mountain temperatures
here weather stations are sparse or absent. The influence of fine-

cale topoclimatic temperature variation on ecological pattern and
rocess is largely unknown. However, as efforts to predict the
cological impacts of climate change advance, issues of scale and
esolution should be considered, as significant temperature vari-
bility occurs at resolutions finer than what is currently available.
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